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THE UNIFIED THEORY OF SHIP MOTIONS

by

J. N. Newman
P. Sclavounos

Department of Ocean Engineering
Massachusetts Institute of Technology

(Preliminary Copy of paper to be presented
at the 13th Symposium on Naval Hydrodynamics
Tokyo, Japan, 6-10 October 1980.)

ABSTRACT

A linear theory is presented for the
heave and pitch motions of a slender ship,
moving with forward velocity in calm water.
The velocity potential includes a particu-
lar solution similar to that of the high-
frequency strip theory, plus a homogeneous
component which accounts for interactions
along the length in an analogous manner to
the low-frequency "ordinary" slender-body
theory. The resulting "unified" theory is
valid more generally for all frequencies of
practical importance.

Computations are presented for the
added-mass and damping coefficients of a
floating spheroid, a Series 60 hull, and
a frigate. Comparisons with experimenta?
data and with zero-speed exact theories
confirm the utility of the unified theory.

This theory can be used to analyse
the performance of eloncated wave-energy
absorbers. This application is illustrated
for a hinged "Cockerell" raft.

1. INTRODUCTION

Conventional ship hulls are slender in
the geometrical sense, with small beam and
draft compared to their length. This is
convenient from the standpoint of hydrody-
namic analysis, since slender-body approxi-
mations simplify the governing equation and
boundary conditions.

Geometrical slenderness is sufficient
to justify the classical slender~body theory
of incompressible aerodynamics, but in ship
hydrodynamics the wavelength represents an

additional relevant length scale which must
be considered in developing asymptctic
theories of practical utility. This
complication in slender~ship theory applies
not only to unsteady motions in waves, but
also to the analysis of steady-state wave
resistance. The present paper is concerned
only with the former problem, and is
restricted to the solution of the radiation
problem for forced heave and pitch motions
in otherwise calm water. Work currently in
progress by Sclavounos (1980) will extend
this theory to the diffraction problem of
incident waves, including the determination
of the exciting forces and moments.
Substantial wave excitation in heave
or pitch requires an incident wavelength
greater than the ship length, typically by
a factor of 1.5 or more. This implies a
regime where, based on the beam and draft,
a long-wavelength or low-freaquency approxi-
mation is appropriate. Hydrostatic res-
toring forces and the Froude-Krylov exciting
force are dominant, and the resulting theo-
retical description of ship motions is rela-
tively simple. This is the leading-order
result of "orcdinary" slender-body theory.
For a ship proceeding with significant
forward speed, the Doppler effect increases
the freauency of encounter and shortens the
radiated wavelength. Resonance occurs when
this wavelength is comparable to the beam
and draft, and therefore much less than
the ship length. This is the applicable
regime of strip theory, where three-
dimensional interactions in the longitu-
dinal direction are negligible.




The practical domain of ship motions
in waves obviously embraces both of the
above regimes, in the sense that the fre-
quency of encounter may be low, especially
for following seas, or high as in the case
of a fast vessel in head seas. 1In the
context of slender-body theory, it is
desirable therefore to avoid restrictive
assumptions concerning the wavelength or
the frequency of encounter. That objective
has led to the development of a "unified"
slender body theory which embraces both
long and short wavelengths in the sense
defined above.

The theoretical framework for the
unified theory of ship motions is developed
in Newman (1978) and in more detail, for
the special case of zero forward velocity,
by Mays (1978). The latter work includes
computations of the damping and added-mass
coefficients for a floating spheroid, and
the remarkable agreement of the latter with
exact three-dimensional computations was an
important motivation for extending the
computations to ship-like forms, and to
non-zero forward velocity. The present
paper is intended to report on these
efforts.

A brief review is given of the theo-
retical framework for the unified theory,
in Section 2, and supplemented in Section
3 by the derivation of a simplified expres-
sion for the kernel function which governs
longitudinal interactions along the ship's
length. Numerical results for the added-
mass and damping coefficients are presented
in Section 4, to illustrate the practical
utility of this theory in predictions of
ship motions in waves. The unified theory
also has been used to analyse the wave-
energy absorption of elongated devices such
as the Cockerell raft and Kaimei ship, and
the results are described briefly in Section
5.

Before proceeding with the mathematical
details of the unified theory, it may be
useful to present a brief description which
avoids so far as possible the use of mathe-
matical arguments. The fundamental assump-
tions are that (1) the fluid motion is
irrotational and incompressible, (2) the
oscillatory motions of the ship and of the
fluid are sufficiently small to linearize,
and (3) the ship hull is geometrically
slender.

For heave and pitch motions and, more
generally, situations where the distribu-
tion of normal velocity on the hull surface
is a slowly-varying function along the
length, the flow is essentially two-dimen-
sional in the near-field close to the hull.
Changes in the x-direction are relatively
small in this region, by compariscn to
changes in the transverse plane. Thus the
flow in the near field is governed by the
two-dimensional Laplace equation, and sub-
ject to the simplest linearized free-sur-
face boundary condition which applies in
two dimensions and is independent of for-
ward velocity. These characteristics of

the inner problem, and its solution, are
similar to strip theory.

The outer problem which applies far
from the hull surface is fully three-dimen-
sional, with gradients in the longitudinal
direction comparable to those in the trans-
verse plane. The three-dimensional Laplace
equation governs the solution, subject to
the complete linearized free-surface bound-
ary condition (where the forward speed is
a significant parameter) and the radiation
condition of outgoing waves at infinity.

Neither the inner nor the outer problem
is unique, as described above, since nothing
has been stated about their respective
asymptotic behavior far away in the inner
problem, and close to the ship in the outer
problem. Following the method of matched
asymptotic expansions, this nonuniqueness
is resolved by requiring the two solutions
to be compatible in a suitably defined
overlap region.

In the special case of ordinary slender-

body theory, the frequency is asymptotically
small in the inner solution, and the "rigid"
free-surface condition applies. For ver-
tical motions of the ship's section there
is a net source strength, and thus the
inner solution is logarithmically singular
at "infinity", in the overlap domain. As
in the classical slender-body theory of
aerodynamics, this determines the effective
source strength of the outer solution.
Conversely, the inner limit of the outer
solution determines a nontrivial additive
"constant” in the inner solution, which is
a function of the longitudinal coordinate.

By comparison, in the high-freguency
domain of strip theory, waves are present
in the inner problem via the free-surface
condition. Their outgoing radiated behavior
at "infinity" can be matched directly to
the inner limit of an appropriate three-
dimensional source distribution, along the
ship's axis. The inner free-surface condi-
tion does not admit an additive constant,
and hence the inner solution is not affected
by the matching process, justifying the
strip-theory solution itself.

Proceeding without restriction
of the frequency requires that the
inner free-surface condition is
preserved, as in the high-~freauency
case. However, the corresponding
strip-theory solution with outgoing
waves at "infinity® is not sufficiently
general to match with the outer solu-
tion. Therefore a homogeneous solution
is included in the inner problem, with
standing waves at "infinity":; the
coefficient of this homogeneous solu-
tion is determined from an integral
equation similar to that which determines
the additive constant in ordinary slender-~
body theory.

In summary, the unified solution
is an extension of the ordinary slen-
der-body theory and strip theory
which applv respectivelv in the low-
and high-frecuency limits. The inner solu-

-




- o I it 7.

tion is similar to, but more general than
that of strip theory. The two-dimensional
damping and added-mass coefficients are
the fundamental parameters of this inner
solution but, with forward velocity, the
complete solution of the kinematic hull
boundary condition requires additional
parameters to be evaluated. The integral
equation associated with the matching
requirement is an additional complication,
but its solution is a relatively minor
chore by comparison to the numerical pro-
cedures required in the strip theory.
Thus, while the concept of the unified
theory is a nontrivial extension of strip
theory, the computational effort reguired
to utilize this more general approach is
not substantially greater. The numerical
results which follow more than justify this
additional effort.

2. THEORETICAL DERIVATION

We consider a ship which moves in the
positive x-direction, with constant forward
velocity U, while performing small har-
monic oscillations of freguency w in
heave and pitch. These and other oscilla-
tory quantities are expressed in complex
form, with the time factor eiwt understood
throughout. Both U and & are restricted
to be >0. The analysis in this Section is
abbreviated from Newman (1978), where more
details are provided.

The principal task is to solve for the
complex velocity potentials ¢ ;, due to
heave (j=3) and pitch (j=5) mogions of unit
amplitude. With the assumptions stated in
the Introduction, these potentials are
governed by the three-dimensional Laplace
eguation

@ixx * Piyy * Pizz = O (1)

and, in the frame of reference moving with
the steady forward velocity of the ship,
by the linearized free-surface boundary
condition

2 2 =
—oS Py 20U, UG 4 9$52 = O/
on z = 0. (2)

Here z = 0 is the plane of the free surface
and z is positive upwards. Far from the
ship the potentials must satisfy a
suitable radiation condition of outgoing
waves and, for large depths, the condition
of vanishing motion as z + - =,

The potentials ¢4 are distinguished
by their respective boundary conditions on
the wetted surface of the ship hull. With
the instantaneous position of this surface
replaced by its steady-state mean 5, the
appropriate boundary conditions are

93!1 = iwn3 + Umgy, (3)

?Sn = -iwxng - Uxm, + Ung. (4)

Here the subscript n denotes normal
differentiation, with the unit normal

vector pointing out of the fluid domain,

n is the component of this vector parallel
tg the x4 axis, and m is an auxiliary
function Aefined in termd of the steady-

state perturbation potential U¢ by the
relation*

m3 = -n2 ¢yz - n3 @zz, on S. (S) !
Since ¢ satisfies the rigid free-surface

boundary condition in the inner region,
m3 is independent of U.

The boundary-value problem for
can be restated separately in the inner
region, where the transverse radius

r = (y2 + 22)1/2 is small compared to the
ship's length, and in the outer region
where r is large compared to the beam
and draft. The radiation condition (and
vanishing of the solution as z + - «) are
applicable only to the outer solution, and
the boundary conditions (3) and (4) to the
inner solution. The missing conditions in
each case are replaced by the requirement
of matching, in an overlap region where r
is large compared to the beam and draft
but small compared to the length.

Gradients in the x-direction are
neglected in solving the inner problem.
The governing eguation is

iadi

P vy * Praz = O 2
subject to the free-surface boundary
condition

2
w?j-i'g?jz—o, on 2z 0 (7)
Fquations (6) and (7) are applicable to the
two-dimensional strip theory of ship motions.
In view of the boundary conditions (3) and
(4), particular solutions of the inner
problem can be expressed in the form

(s) _
P =5 U ey (&)

where the latter potentials satisfy (6),
(7), and, on the hull profile, in planes
X = constant,

¢3y = iwng, (9)
a3n = My (10)
b5 = ~X¢5, (11)
bg = =xby - (1/w)e;. (12)

*The subscripts j=1,2,3 correspond respec-
tively to (x, y, 2).




The potentials in (8) also satisfy the
extraneous two-dimensional radiation condi-
tion. Thus we add to (8) a homogeneous
solution of (6), (7), and of the boundary
condition on the hull. This homogencous
solution can be obtained simply in the
form (¢3 + ¢3) where the overbar denotes
the conjugate of the complex potential ¢3.
This homogeneous solution behaves like a
two-dimensional standing wave at large
distance from the hull, and can be regarded
physically as the superposition of two
diffraction solutions with symmetric inci-
dent waves acting upon the fixed hull
profile.

In summary, the general solution of
the inner problem takes the form

=@, (9 e
G5 =F;  tCye0 (ay + Ry (13)

where the /intcraction [unciion Cj(x) is
an arbitrary "constant® in the inner solu-
tion to be determined from matching.

The outer solution follows by con-
sidering the complete Laplace equation (1)
and free-surface condition (2), but ignoring
the hull boundary conditions. Assuming
symmetry about the plane y=0, an appro-
priate solution follows from a longitudinal
distribution of sources along the ship's
length,

?j = JL qj(l') G(x-¢, y, z)di. (14)

Here q;(x) is the source strength, and ©
denoteg the potential of a "translating-
pulsating” source situated on the x-axis

at the point x = 7. This potential is
cxpressed generally in the form of a double
Fourier integral over the frec surface. Of
particular utility in our analysis is the
Fourier transform of G, with respect to
x, which can be expressced as

k) I Gix, y. 2) cikx dx

explz(k2 + uz)l/? + iyu]l

(k™ + u”) % =

vo= (w b UK) /g, (16)

When Ikl - r, therc arc two symmetric rcal
poles in (15), and the appropriate contour
of integration is ¢geformed in their vicin-
ity such that Imfu“(m + Uk)] - O.

In order to match the inner approxi-
mation of (14) in the overlap region, an
asymptotic approximation of (15) is re-
quired for small values of (ky, kz). The
desired result can be cxpressed in the

form

¢ lyezik) = Gy - (14 Kz £ (K), an

where G ! {v,z;0) is the two-dimen-
sional sggrce potential, which satifies (6)
and (7), and

cos™ (n/ |k ]|) ~n

*
f =tn 2K/|Kk|) + ni -
(kz/v2—1)1/2

«x2n? -1,

cx)sh-%(_x_/lkl)hi sgn_(w+Uk)
Qa - k2/'2)1]2

* .
£ =¢tn (2K/|K)+ ni-

’

2% 1,

where K = mz/g.

It remains to match the inncr and outer
solutions (13) and (14). This may be carricd
out in the lFourier domain, using the con-
volution thcorem to transform (14), and the
appropriatc matching condition takes the
form

*

(s)* * *
?j +IC 00 (hy * )] =y G

(20)

Far from thc hull in the inner domain, the
two-dimensional potentials on the left side
of (20) can be expressed in terms of the
effective source strenqgths, in the form

b5 = o5 Sgp (21)

(22)

using (8), (17), and the fact that Im (G, )=

% cchos Ky, and cquating scparntely the

factors of Gzn in (20), it follows that

2D

* ®
(“’j + nj)] = qj

* *
a. + U o, 4+ [C,
b] ] ]

and

A 1 * %
-1(Lj()j) = - Z—(‘l] f . (24)

The crrgr in the last equation is a factor
1 + 0(K%r2),

*FEquation (16) corrccts a sign crror in
cquation (4.9), and in the denominators of
(4.6) and (4.8) of Newman (1978).
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The inverse Fourier transforms of the
last equations provide the relations

. o, +5.) =q., 25

03+Uo)+Cj(o) L93) = qy (25)
ic.a, = . £(x-£) d, (26

2ni CJ aJ JL qJ(E) (x-¢) dg )

where

£(x) = 5 J ak e ikX £% (). (27)

After elimination of C; from (25) and (26),
the outer source strength is determined
from the integral equation

a0 - Frp (03/55+ 1) Lﬁj(s) £(x-£) de

= oyx) + uéj(x). (28)

Assuming a numerical solution for the
two-dimensional potentials in (8), and the
corresponding source-strengths o, o, the
integral equation (28) may be solved for
the unknown outer source strength qj(x).
The complete inner solution follows~ from
(13) and (25), in the form

LG Sl a3 )

(29)

The first term on the right side of (29) is
the strip~-theory potential (including the
contribution from ¢; which usually is
ignored). The remalning contribution to
(29) represents the three-dimensional
interaction between adjacent sections.

In the high-frequency domain the
integral in (29) tends to zero, and the
strip-theory solution remains. Conversely
in the low-frequency regime the two-dimen-
sionar potentials in (29) simplify and the
ordinary slender-body result is recovered
as derived by Newman and Tuck (1964). The
unified potential (29) is valid more
generally, for all wavenumbers between
these two limiting regimes.

In the special case of zero forward
velocity (U=0), the unified solution (29)
reduces to a form closely related to the
"interpolation solution” derived by Maruo
(1970). Maruo's approach is rather differ-
ent, but the only change in the final re-
sult is that the homogeneous solution
(44+3,) is replaced by (1+Kz), and the
amplitude of the two-dimensional strip-
theory potential is modified accordingly
to satisfy the boundary condition on the
body.

3. REDUCTION OF THE KERNEL

The kernel (27) in the integral equa-
tion (28) is defined by the inverse Fourier
transform of the function £ given by (18)
and (19). This kernel can be interpreted
as the value of the source potential on the
x-axis, after subtraction of the two-dimen-
sional oscillatory source potential Gjp.
Singularities can be expected, especially
at x=0, and a careful analysis is required.

The singular behavior at x=0 can be
mitigated by considering the integrgl of
f(x}, or the inverse transform of f /(~ik).
If this modification is offset by multiplying
the transformed source strength aj by (-ik),
in (24), (29) is replaced by

- (s) = =1 - Y -

(30)
Here q.” denotes the derivative of the
source]strength. and the new kernel is
I} «© * - .
Fix) = 5= ] £' (k)e KX ax/k. (31)

Since £'=0(k) as k+0, the integral (31) is
convergent and F(x) vanishes as |x!+ =,
There is a logarithmic infinity in £f*(k) as
|k|+ =, and hence in F(x) as x - 0, but
this singularity can be integrated in (30)
without difficulty.

The integral in (31) can be simplified
by considering the function

Atk) = £n(2K/k)
-1/2 1/2
- (1-k%/? e/ (2%-1) T,
(32)

where x (k) is defined by (16). A(k) is
analytic throughout the finite k-plane,
except for a branch cut on the negative
real axis. With appropriate values
determined on each side of this branch cut,
in the manner described by Sclavounos
(1980}, it follows that

£ (k) = A(k+i0) + ni + =i H(~k)

2, 2, "1/2
+ (11-k"/c]) g,(k) . (33

Here H(-k) is the Heaviside unit function,
equal to one for k<0 and zero otherwise, and

g, k) = 2ni , ('®<k<k1). (34a)

g,(k) =0, (k) <ke<k,), {340}




9+(k) = -2ni 2 (k2<k<0), ’ {34c)
g_(k) =0, (~=<k<0), (344)
g, (k) = -vi , (0<k<k3, t<1l/4), (34e)
gt(k) =7, (k3<k<k4. t<1/4), (34f£)
gi(k) = -ri , (k4<k<m, t<1/4), {34q)
g!(k) = -wi , (O<k<=, 1>1/4). (34h)

The branch-points of the square-root func-
tion in (33) have been defined by

1/2

kl,z = -(9/202)[1+zr + (1+41) 1, (35)
1/2 :

Xy 4 = (g/20%) [1-2v 7 (1-41) ' °), (36)

and

t = w0/g. (37)

Note that k are real and negative,
whereas k are positive for t<1/4, and
complex- ééajugate otherwise.

From Jordan's lemma

-ikx

j Atk2i0) e 3% ax/k = 0, (x50). (38)

Hence, from (31) and (33),

F(x) = F)(x) + Fy(x), (x<0), (3%a)
Fix) = FZ(X). (x>0), (39b)
where

k1 ~ikx 2
Fylx) = - J [1+(1-k /x ) jak/k

k

J 2 ik dak/k

ky

0 -1/2

- J e tkxpy_1ox2/c2) T Tyask,
k,

(40)

«© “1
3+J }e-ikxll-(l-kz/xz)
ky

/2
1dk/k

X, _. -1/2
-% J 4 omikxyy g (x2/c2-1) 1dk/k,

(t<1/4), (41a)

@ -

. /2
e ik¥ . (1-x2/c2) Jdk/k,

(v>1/4). (41b)

The function F; is logarithmically
infinite at x=0, but F, is regular at this
point for U>0. From (39) it follows that
the logarithmic singularity exists only on
the downstream side of x=0.

The singularity in Fj can be
displayed explicitly by using froperties
of the gine and cosine integrals to express
(40) in the alternative form

Ky 0y _ -1/2
F,(x) = [J 1-J ]e ikx 1o (1-x2/e2) " T yaxsx
- k2
o (0 .
-{J + j ](1-e’1kx)dk/k
ky ky
- 2[n(ux|/U) + vy + wif2], (42) ;

Here y=0.577... 1is Euler's constant.
The integrals in (41) and (42) are con- ‘
vergent for all values of x, if U>0, and
can be evaluated by numerical guadratures.
Both limiting forms of the kernel,
for zero forward velocity and for zero
frequency, can be derived by letting -0,
The resulting integrals in (40) and (41la)
are evaluated after replacing the branch-
points (35) and_(36) by their limiting
values, kl ‘ = +(g/U ) and k2 3 = ¥ K, and

approximatlng x by U k /g or K, respectively.
In this manner it can be shown that, for
=0,




R T T R e
e

+

F(x) = = %(tn(2x|x|) + vy + wi)

+1
™

K]x
j Huo(t)+Y°(t)+ZiJo(t)]dt
0

TreR) v glx1/0?) -n g (gx/vh)1,

(x20). (43)

Here Ho Y and Jo are the Struve and Bessel

o
functions of order zero.

The contribution from the last line
in (43) vanishes for U=0, and the resulting
kernel is equivalent to that derived by
Ursell (1962). 1In this c=2se, as in classi-
cal slender-body theory without a free
surface, the logarithmic singularity is
antisymmetrical.

For the steady-state case w=0, on the
other hard, the integral in (43) vanishes
and the result is consistent with that of
Tuck (1963). As x++0, the resulting
singularity from the first term on the
right-hand side of (43) is cancelled by
the Bessel function Y and, as stated above
for the more general Snsteady case, there
is no upstream logarithmic singularity.
(The contribution from £n(K) in the
first term is cancelled by a similar factor
in the low-frequency limit of the two-
dimensional source potential G,..)

The regular part of the kéy%el (27) as
a function of x/L is shown in Fioure 1 for
a Froude number 0.2 and two values of 7,
0.2 and 0.7 less and greater than 1/4
respectively.

4. ADDED-MASS AND DAMPING COEFFICIENTS

The principal application of the re-
sults above is to predict the hydrodynamic
pressure force and moment, acting upon a
heaving and pitching ship hull in response
to its oscillations, With the usual de-
composition, these forces and moments are
expressed in terms of added-mass (aji) and
damping (bji) coefficients, which are the
factors of ahe acceleration and velocity,
respectively, in a linear expression for
the total force and moment. Here i=3, for
the heave force, i=5 for the pitch moment,
and j=3,5 respectively for the contribution
due to each mode.

A total of eight coefficients must be
considered, including cross-coupling
between heave and pitch. These coefficients
can be derived from the inner velocity
potential (29) or (30), by means of
Bernoulli’s equation for the linearized
pressure, and after using a theorem due
to E. O. Tuck (Ogilvie and Tuck, 1969) the
results can be summarized in the form

Lo awits g D S

2 . _ s
w aij 1mbij = 1ijjni¢j ds

. - 2 -
- pU j}(lwnioj - min)dS + oU IJmi¢j as

- p ”Cj(x)(iwni - Umi) (Oj + ‘j) ds.

(44)

Here the surface integrals are over the
submerged portion of the hull and, except
for

Mg = Ny - Xmg, (45)

the quantities in (44) are defined in Sec-
tion 2.

The first integral in (44) is the zero-
speed strip-theory contribution, or the
integral along the length of the two-dimen-
sional added~mass and damping coefficients.
The second and third integrals in (44)
represent linear and gquadratic effects of
the forward velocity which appear (to
varying degrees) in the strip theories.
(The guadratic terms are sometimes regarded
as higher-order, and the potential ¢ is
usi:ally ignored.) Green's theorem can be
used to show that the second integral in
(44) vanishes when i=j.

The last integral in (44) represents
the three~dimensional correction from the
interaction function Cj(x). As w+=, the
integral eaguation (29) &an be used to show
that Cj+0, and the "pure” strip theory is
recovered. Except for this limiting case,
however, three-dimensional effects are
significant in (44).

The first computations of added mass
and damping based on the unified theory
were performed by Mays (1978) for a prolate
spheroid, floating with its major axis in
the plane of the free surface, and for zero
forward velocity (U=0). From symmetry con-
siderations there is no cross-coupling in
this case. Comparisons with the ordinary
slender-body theory, strip theory, and with
"exact" three-dimensional numerical solu-
tions are included by Mays for values of
the beam-length ratio equal to 1/16, 1/8,
and 1/4. The results for 1/8 are repro-
duced in Figure 2 and it is apparent that
the added-mass and damping coefficients
predicted by the unified slender-body
theory are in virtually perfect agreement
with the exact solutions of Kim (1964) and
Yeung (Bai and Yeung, 1974). By comparison,
the strip theory predictions are satisfac-
tory only for relatively high freauencies
(KB>1), and the ordinary slender-body
theory is useful only for KL<l, For the
beam-length ratio equal to 1/4 May's
computations show almost the same degree of
agreement, and demonstrate the broad range
of applicability of the unified theory for
zero forward velocity.
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Our first computations with nonzero
forward velocity were performed for a float-
ing spheroid of beam-length ratio 1/6, for
comparison with the experiments of Lee and
Paulling (1966). The results were generally
in agreement, but the experimental scatter
precludes a definitive judgement of the
degree of improvement of the unified theorv
relative to strip theory.

Subsequent computations were performed
for two realistic hull forms where experi-
mental data is available. In each case. we
show the computations based on unified
theory, and the strip theory results of
Salvesen, Tuck and Faltinsen (1970).

The results for a Series 60 hull (block
coefficient 0.7) are shown in Fiqures 3 and
4, and compared with the experimental data
of Gerritsma and Beukelman (1964) and
Gerritsma (1966). For zero forward velocity
(Figure 3) the agreement between the unified
theory and experiments is very good
for aj,, b33, and bgs. The remaining

coefficients show a departure of the experi-
mental data at low frequencies. The cross-
coupling coefficients are symmetric in this
case, and only one pair are shown. For low
and moderate frequencies the differences
between the unified and strip theories are
substantial, and the experiments generally
support the unified theory. All eight
coefficients are shown in Figure 4, for a
Froude number of 0.2. In this case the
differences between the two theories are
reduced, suggesting in the strip theory
that there is some cancellation between the
approximations associated with forward
velocity and three-dimensionality. The
agreement between the unified theory and
experiments is generally favorable, with
the notable exception of the cross-coupling
coefficients a and b

The coeffiglengg aj » bgg and a3g
have also been computed %or t e Series 60
hull by Chang (1977), using a full three-
dimensional theory but neglecting the con-
tribution from the potent1a1 é. For zero
forward velocity Chang's results are in-
distinguishable from the unified theory.
For the Froude number 0.2, the same is true
of a33 and agg, whereas Chang s comparison
with experlments is better for ag3; and
worse for bgs.

Our f1na1 results are for the Friesland
class frigate hull (block coefficient 0.554)
where experimental data are given by Smith
{1966). The comparisons in Figures 5 and
6 are for Froude numbers of 0.15 and 0.35,
respectively. Once again there is a ten-
Jency in some coefficients for the experi-
mental data to diverge from the unified
theory at low frequencies, and the cross-
coupling coefficient 235 shows poor
comparison for all frequencies. The re-
maining results for the lower Froude number
show good to excellent agreement between
the unified theory and experiments. Similar
conclusions apply for the higher Froude
number, except that in this case the com~
parison for the coefficient Pg3 is un-
satisfactory. In this case, unllke the
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Series 60 hull, there is good agreement for
the coefficient agj3.

These comparisons of the added-mass
and damping coefficients can be summarized
with the following conclusions. In the
case of zero forward velocity excellent
agreement exists between the unified theory,
three-dimensional numerical solutions, and
experimental data. With forward velocity
included, there are no complete three-
dimensional computations with which to
compare, and the unified theory can be
judged only on the basis of experiments.
Good agreement exists in most cases, but
the confirmation is not satisfactory for
some of the cross-coupling coefficients.
Relative to the strip-theory predictions
with forward speed, the unified theory
provides a noticable improvement in the
i}aqonal coefficients a33, agg, b33 and

>3 Although the accuracy of the experi-
mental data is not well established, one
possible explanation for the remaining
discrepancies is that the treatment of
end effects in the unified theory requires
some refinement. In this context we note
that the steady-state disturbance potential
U is approximated in the inner region in
a stripwise manner by assuming no inter-
action between subsequent cross-sections.
A wall boundary condition is satisfied on
the free surface and conformal mapping is
used for the evaluation of m3 through
expression (5). The two dimensional
velocity potentials ¢4 satisfying a wave
free-surface condition are then evaluated
using a two dimensional numerical procedure
due to Yeung (1975).

This procedure breaks down at the ship
ends, introducing a significant overpre-
diction of m; and conseguently of and

This dl%flculty has been av01de3
a@sumlng a linear variation of mj w1th1n
5% of the ship length awav from each end,
and assuming m3=0 at the ends. This
problem could be overcome hy evaluating
m3 from the full three-dimensional
double-body steady disturbance potential.

The kernel of the integral eguation
defined in (41) and (42) was evaluated
numerically using Simpson's integration
formula, with appropriate truncation
corrections based on asymptotic expansions
of the integrand. The number of integra-
tion points is determined to _ensure a
relative error less than 10-5.

The integral eguation (28) is solved
by iteration using the strip-theory source
distribution as the first iteration. The
solution obtained in this manner has been
checked against an independent matrix-
inversion solution.

The two-dimensional strip-theory
calculations were performed on an IBM370.
The kernel evaluation and the solution of
the integral eguation were performed on a
PDP11-34 minjcomputer. The computation
times required are estimated as follows:




TABLE 1

COMPUTATION TIMES

IBM370 PDP11-34
(sec) (sec)
2D potentials (¢3) 3 180
2D potentials (63) 4 240
Kernel and integral
equation (U=0) 0.16 10
(U>0) 1 60
Total time required
(U=0) 3.16 190
(U>0) 8 480

These estimates suggest that for
finite forward velocity the additional
computational effort required by unified
theory is of the order of 1/7 of the two-
dimensional strip-theory calculations if
the latter are complete. For zero forward
velocity the corresponding ratio is 1/18.

5. ELONGATED WAVE-POWER DEVICES

The unified theory can be used to
analyse the performance of elongated wave-
power absorbers such as the Cockerell raft
and Kaimei ship, in a similar manner to the
results of Newman (1979) based on the
ordinary slender-body theory. In this
application the forward velocity is set
equal to zero, with resulting simplification
of the analysis.

Following Newman (1979), we consider
the power absorbed by a slender body moored
in the head-sea configuration and perform-
ing vertical oscillatory motions of appro-
priate amplitude and phase, along its
length. The power absorbed by this motion
can be represented as the product of the
energy flux per unit width in the incident
wave system, and an "absorption width" w.
In ideal circumstances W is comparable to
the wavelength or body length, and sub-
stantially larger than the projected width
of the body.

The absorption width can be expressed
in terms of the far-field radiated wave
amplitude due to the body motions, or the
Kochin function H{(6¢) which is proportional
to the radiated wave amplitude in the
direction o relative to the x-axis. If
the incident waves propagate in the +x-
direction, and if the body motions are
controlled in an optimum manner to maxi-
mize the absorption width, this quantity
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can be expressed in the form

2
W= l{%")———l—-—lﬂ(") - (46)
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J [H(e)l an
o

In long wavelengths the optimum modal
amplitudes of the body increase in propor-
tion to the wavelength, and unrealistically
large motions are required for (46 ) to be
valid. To estimate the practical limit of
the absorption width we define a parameter
B as the product of the beam-length ratio
(b/L) and the maximum allowed vertical
displacement per unit wave amplitude.
Assuming arbitrarily that the maximum dis-
placement is twice the incident wave ampli-
tude, and that the beam-length ratio is
between 0.1 and 0.2, typical values for B
are 0.2 and 0.4, respectively.

With the body motions limited in the
above sense, the absorption width is given
by
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W= 28|LH(=) /) - ;}; g KJ‘ LB {8)/b }2 de (47)
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for small values of B8, and by (46 ) when
g is larger than the value where 147 )
attains its maximum. Alternatively, with
8 fixed, (46 ) holds for K>Ky and (47) for
K<K_, where the transition wavenumber is
defined by the condition that (4¢ ) and
(47 ) are equal.

In ordinary slender-body theory, where
Kb<<1l, the Kochin function is given to
leading order bv

H(8) = -K ( e—ikECOSS
L

f(£) b(e) dg. (48)

Here f(x) is the vertical displacement and
b(x) is the local beam at the waterplane.
This approximation was used by Newman (1979)
to calculate the absorption width of various
modal shapes, with the symmetric and anti-
symmetric modes (with respect to x) treated
separately and superposed to obtain the
total absorption width. The curves in
Figure 7 show the total absorption width

for an articulated raft, consisting of

three rigid seaments connected bv two
symmetric hinges.*

In the unified theory, the Kochin
function can be expressed in terms of the
outer source strength g(x), and (48) is
replaced by

H(e) = -;—; j q(g) e ikécos® 4. (49)
L

*For this case, and also for the Legendre R
polvnomial modes, the values of R given by :
Newman (1979) should be multiplied bv a

factor of 2.0. This error has been cor-

rected in Fiqure 7.



with q(x) determined from the integral eaua-

tion (28). Computations have been performed
on this basis, for an articulated raft with
beam-length ratio 0.1 and beam-draft ratio
2.0. These new results are shown in Figure
7, and a comparison can be made with the
absorption width based on the ordinary
slender-body theory. This comparison re-
veals that the latter approximation over-
estimates the absorption width by a sub-
stantial amount, when the modal amplitudes
are limited, but in the shorter wavelength
regime where this limitation is not appli-
cable, the ordinary slender-body theory is
quite accurate. Similar conclusions have
been reached by Haren (1980) based on a
three-dimensional numerical solution in the
case of a body with zero draft. It appears
that the ordinary slender-body theory over-
predicts the magnitude of the Kochin func-
tion, and hence the limited absorption width
(47), but (46) is not sensitive to this
error in view of its form.

In conclusion, the earlier results of
Newman (1979) based on the use of ordinary
slender-body theory overpredict the per-
formance of an elongated wave-power device,
particularly in the regime of wavelengthe
where the absorption width is a maximum.
The unified theory can be used to provide
a more precise estimate of the absorption
width.
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Figure la - Regular part (f_,) of the kernel (27) as a function of the longitudinal coordi-
nate |x|/L for t=wU/g ecual™to 0.2 and 0.7 (Figures la and 1lb respectively). Waves are
present upstream only for the first case, associated with the root k., in (36) and with

the wavelength-to-ship-length ratio 2s/k,L = 3.3. For 1=0.7 (Figure~lh) no waves exist
upstream. Downstream of the disturbance”the most obvious wave motion is associated with
the largest root ky, and with the wavelength-to-ship-length ratio 0.19 (r=0.2) and 0.12
(1=0.7)., Longer wavelengths also exist downstream, associated with the roots k. and k

for t < 1 and with k., alone for t > 1 . fTheir superposition upon the shorter wgve syséem
is more gpparent in 3igure 1b. 4
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Figure 7 - Total absorption width, as a fraction of the body length, for an articulated raft
with two symmetric hinges situated at the points x = :L/5. The curves for the ordinary
slender-body theory (OSBT) are from Newman (1979), corrected as noted in the footnote, with
superposition of the power obtained separately in the even and odd modes. The full lines
are the values of the absorption width determined from the unified theory, for a beam-length
ratio of 0.1, and a beam-draft ratio of 2.0. 1In all cases the body motions are of optimum

phase. The maximum amplitude in each mode is equal to the product of BL/b and the incident
wave amplitude.




